

Egyptian Journal of Chemistry

http://ejchem.journals.ekb.eg/

Prediction of Thermal Isomerization Temperatures of Substituted Benzocyclobutenes to o- Quinodimethanes Using Hardness, Polarizability and energies of σ , σ^* and π^* orbitals.

Ammar H. Al-Sabawi*, Hyffaa Y. Hussien, and Abdulkhalik S. Alkazzaz Department of Chemistry, College of Science, University of Mosul, Mosul, IRAQ

Abstract

The prediction of Thermal Isomerization temperatures (IT) of benzocyclobutenes is useful for their applications in synthesis and polymerization. In this study, ITs were predicted by equations formulated from the hardness, of the products transition states or the difference between the hardness of product and transition state. Also, It's predicted from the orbital energies of the σ , σ^* , π and π^* orbitals of the benzocyclobutenes.

Keyword: benzocyclobutenes, hardness, polarizability, isomerization temperatures, regression.

Introduction

Benzocyclobutenes (BCBs) undergo ring opening isomerization when heated to generate highly reactive intermediate oquinodimethanes (o-QDMs) 1 (scheme I).

G = H,CH₃,OCH₃,OH,NH₂,CI,CN,NO₂,CONH₂,Br

Scheme I

This isomerization is a useful source of very reactive functionalized dienes usually used in synthesis of natural products the polymerization or polymer cross-linking [1-5]. The temperature of isomerization (IT) is so important for these applications. However, substitution on C8 or (and), C7 with electronreleasing or electron-withdrawing groups has no systematic effects on IT. The literature contains two methods developed for the prediction of IT. The first was the correlation between IT and 13C chemical shifts NMR of benzocyclobutenes [6]. The second was the correlation of IT with the semi-empirical calculated enthalpy of activation [1]. In the present work, we present a correlation method for the prediction of IT of benzcyclobutenes

from computed quantum parameters. We found good conformity with the previous experimentally found values of the literature [1, 6-8].

With the development of the density functional theory (DFT) and the increase in the velocity of computers in the last decades, it becomes easy to estimate the chemical global reactivity parameters[9] such as hardness (η), polarizability (α) [10, 11] electronegativity, electrophilicity, nucleophilicity, Fukui function[12].

By using Koopman's approximation [13], where the energy gap is

= $(\epsilon LUMO - \epsilon HOMO)$ (1) we can estimate the hardness as follow:

 $\eta = 1/2$ (cLUMO - cHOMO).....(2) Where ϵ HOMO and ϵ LUMO are energies of higher occupied and lower unoccupied molecular orbitals of the molecule respectively.

The polarizability is one-third of the diagonalized tensor [10, 12]:

Where αxx , αyy and αzz are the diagonalized components of the polarizability tensor.

*Corresponding author e-mail: ammar-alsabawi@uomosul.edu.iq

Receive Date: 25 February 2021, Revise Date: 22 May 2021, Accept Date: 01 June 2021 DOI: 10.21608/EJCHEM.2021.50081.3057

©2021 National Information and Documentation Center (NIDOC)

Computational Methods and Statistical Details

All the computations were done using Orca 4 0 0. Geometry optimizations of the title compounds were performed to determine molecular orbitals energies (éHOMO-éLUMO) of the reactants and products using density functional theory (DFT) with B3LYP level, def2-SVP basis sets, and def2-SVP/C as auxiliary basis sets. Also, RIJCOSX "chain of spheres" COSX approximation was used to speed DFT calculations[14]. A surface scan was done in order to start optimization from a point near the transition state (TS). Imaginary frequencies were obtained from the Hessian calculations. Then the energies of the molecular orbitals of the TS were computed. The hardness and the polarizability of the reactant, product, and the transition state were calculated from the obtained molecular orbital energies and the diagonalized tensor using equations 2 and 3 respectively. A linear regression was performed to obtain linear correlations between the temperature of isomerization and hardness, energies of orbitals, using SPSS statistical program. The credibility of the correlations

obtained depend on the significance value (sig.< .05 considered), R2, t-test(as the value move away from zero the significance of the correlation increase), and F-test (the higher the F-value the better the correlation).

Result and Discussion

The hardness and polarizabilities of all the BCBs, o-QDMs and the TSs were shown in Table 1. The best single correlation obtained was for the regression of the difference between the hardness of TS (H) and that of the product (H_p) and EG $(H-H_p)$ with the isomerization temperature (IT):

 $IT = 899.738 - 28099.264 EG \dots (4)$

 $R^2 = 0.756$, sig. = 0.005, t = -4.308 The predicted ITs are shown in Table 2.

Also, the hardness of the product (H_p) showed a significant correlation with IT and the predicted values of ITs are shown in Table 2: IT = 47841.35 H_p -2139.172(5) $R^2 = 0.845$, sig. = 0.008, t = 3.871

Since electron-releasing groups involve the interaction of σ and π^* orbitals and electron-

withdrawing groups the interaction of σ^* and π orbitals separate regressions were done for each. On single regression of these parameters with the experimental IT the following equations were obtained:

IT = 1712.511 - 21307.85 H(6) R² = 1.0, sig. = 0.012 t = -52.098.

where H is the hardness of TS.

The above equation indicates an excellent correlation of the hardness of the TS with the isomerization temperature for the electronwithdrawing groups. The calculated values of IT are shown in Table 2. On the other hand hardness of the TS of the electron-releasing groups showed poor correlation with the isomerization temperature.

However a correlation of the difference H -Hp (EG) with the isomerization temperature is shown below:

 $IT = 662.383 - 19708.395 EG \dots (7)$

 $R^2 = 0.996$, sig. = 0.039, t = -16.386

IT = 1375.333 - 44654.531 EG(8) R² = 0.922, sig. = 0.009, t = -5.952

Equations 6 and 7 represent the single parameter correlation for the prediction of IT for benzocyclobutenes substituted with electron-withdrawing or electron-releasing groups respectively.

However, on multiple regressions the following equation was obtained:

 $IT = 29109.159 H_p - 18483.124 EG - 743.865$(9)

 $R^2 = 0.932$, sig. =0.001, F = 34.018

The predicted values are also shown in Table 2.

Other useful correlation obtained was between the energies of the σ , σ^* and π^* orbitals (Table3) and the isomerization temperature IT: IT = -1011.814-163.059 σ + 132.196 σ^* -

 $R^2 = 0.961$, sig. = 0.058, F = 16.514

The predicted ITs are shown in Table2.

A closer look at Table 2 shows that most of the compounds with substitution adjacent to π bond such as -CN, -CH=CH₂, -Ph, CHO showed anomaly. Unlikely compounds with substitution adjacent to a lone pair such as - NH₂, -OH, OCH₃, Cl, Br showed good correlation since the lone pair delocalized with C-C σ^* in the transition state.

Table 1: Hardness and Polarizabilities of the Reactant, Transition State and the Produc	ct.
---	-----

Substituent	Hr	Pr	Н	Р	Нр	Рр
Н	0.114065	78.6921	0.075665	88.2634	0.049231	90.5063
CH ₃	0.11352	90.37909	0.074804	-	0.04831	106.2492
OCH ₃	0.111955	94.06988	0.075439	-	0.04655	114.32396
OH	0.112775	82.26175	0.0766245	-	0.0474	97.33571
NH ₂	0.11301	86.54088	0.075356	-	0.045725	104.6009
Cl	0.11134	87.41711	0.073372	-	0.047515	103.8129

5434

Egypt. J. Chem.64, No. 10, (2021)

PREDICTION OF THERMAL ISOMERIZATION TEMPERATURES

CN	0.113055	90.29933	0.066729	-	0.04577	111.7488
Br	0.108315	94.64172	0.071897	110.15433	0.047325	112.3879
OTMS	0.08033	140.618646	0.075633	-	0.04708	158.528606
NO ₂	0.086285	91.20616	0.065575	-	0.04353	116.6538
-CH=CH ₂	0.110165	99.377303	0.062637	121.87008	0.043705	126.87378
-CHO	0.10202	90.100993	0.063611	104.20755	0.043735	112.85843
F	0.11221	78.137653	0.0772015	88.81935	0.048675	90.920843
Ph	0.10943	140.38854	0.0607155	169.48339	0.044135	179.58731
CF ₃	0.113405	88.703996	0.0729655	97.11433	0.04804	104.763116
2CH ₃	0.113755	101.88542	0.049729	117.785713	0.052215	119.67187
2CN	0.113155	101.60529	0.058938	123.65009	0.042025	136.018323
$2NH_2$	0.111095	94.05098	0.0690815	109.64964	0.039355	119.50328
CN, NH ₂	0.103355	97.67138	0.0708145	115.84723	0.044035	129.32406

Table 2: Predication of Isomerization Temperature IT by the Correlations Obtained.

Substituent	IT	IT3	IT4	IT5	IT6	IT7	IT8	IT9	IT
	(oC)a	(oC)b	(oC)c	(oC)d	(oC)e	(oC)f	(oC)g	(oC)h	(oC)i
NH ₂	25	67	48	107	78	52	39	27	113
OH	80	79	129	80	86	70	96	96	-
OCH ₃	110	88	88	105	93	85	77	95	-
CH ₃	180	155	172	119	140	192	173	145	170
Η	200	157	216	100	141	195	201	152	-
Cl	150	173	134	149	153	-	161	139	-
CN	155	311	51	291	249	-	201	159	-
Br	180	209	125	181	178	-	180	184	-
OTMS	100	97	113	101	100	100	99	106	-
СНО	150	341	- 46	357	271	-	162	157	123
F	-	98	190	68	100	101	146	207	143
CF ₃	-	199	159	158	171	-	194	211	156
-CH=CH ₂	-	368	- 48	378	289	-	178	142	132
Ph	-	434	- 28	419	336	-	234	83	154
NH_2 , NH_2	-	64	- 256	241	77	48	- 148	95	15
CN, CN	-	424	- 129	457	329	-	167	417	60
CN, NH ₂	-	147	- 32	204	135	180	43	130	18
NO_2	-	280	- 57	315	228	-	116	153	109

a: experimental values taken from literature reference 5,6,7,8. b,c,d,equations 3,4,5,6,7,8,9 respectively i: values predicted by reference 5. b,c,d,e,f,g: values predicted by

Table 3: Energies of σ , σ^* , π and π^* orbitals of the substituted benzocycl	lo butenes.
--	-------------

Table 5: Energies of 6, 6^{*} , π and π^{*} orbitals of the substituted benzocyclo butenes.						
Substituent	σ	σ*	π	π^*		
Cl	- 6.804	- 0.286	- 7.077	- 0.728		
CN	- 7.038	- 0.459	- 7.284	- 0.773		
\mathbf{NH}_2	- 6.279	- 0.08	- 6.775	- 0.238		
NO ₂	- 7.008	- 0.511	- 7.308	- 0.825		
ОН	- 6.583	- 0.058	- 6.884	- 0.386		
OCH ₃	- 6.583	- 0.065	- 6.884	- 0.389		
Br	- 6.911	- 0.309	- 6.948	- 1.017		
CF ₃	- 7.121	- 0.219	- 7.012	- 0.84		
Ph	- 6.577	- 0.344	- 6.726	- 0.622		
OTMS	- 6.562	- 0.096	- 6.699	- 0.56		
F	- 7.076	- 0.173	- 7.076	- 0.813		
NH2, NH2	- 6.508	- 0.033	- 6.667	- 0.461		
CN, NH ₂	- 6.698	- 0.502	- 7.274	- 1.073		
Н	- 6.651	+0.225	- 6.642	- 0.46		
CH ₃	- 6.647	+0.189	- 6.618	- 0.439		
-CH=CH ₂	- 6.678	- 0.024	- 6.623	- 0.627		
СНО	- 6.842	- 0.599	- 6.842	- 1.222		

Conclusion

All the methods of prediction obtained were successfully applied to benzocyclobutenes in which substituent has a lone pair in the allyl position.

Conflicts of interest

There are no conflicts to declare.

References

- K. Chino, T. Endo, Prediction of thermal isomerization temperatures of substituted benzocyclobutenes to o-quinodimethanes by semi-empirical molecular orbital calculation, Letters in Organic Chemistry 8(2) (2011) 138-142.
- [2] E. Harth, B.V. Horn, V.Y. Lee, D.S. Germack, C.P. Gonzales, R.D. Miller, C.J. Hawker, A facile approach to architecturally defined nanoparticles via intramolecular chain collapse, Journal of the American Chemical Society 124(29) (2002) 8653-8660.
- [3] P. Maurin, D. Moraleda, H. Pellissier, R. Rodriguez, M. Santelli, Synthesis of Unnatural Steroids Using the Bistro Strategy, Synlett 26(06) (2015) 725-736.
- [4] G. Mehta, S. Kotha, Recent chemistry of benzocyclobutenes, (2001).
- [5] J.L. Segura, N. Martin, o-Quinodimethanes: Efficient intermediates in organic synthesis, Chemical reviews 99(11) (1999) 3199-3246.
- [6] T. Kametani, M. Kajiwara, T. Takahashi, K. Fukumoto, Relationship between reactivity and 13C chemical shifts of benzocyclobutenes, Tetrahedron 31(8) (1975) 949-951.
- [7] P. García- García, C. Novillo, M.A. Fernández Rodríguez, E. Aguilar, Competitive Pathways in the Reaction of Lithium Oxy-ortho-quinodimethanes and Fischer Alkoxy Alkynyl Carbene Complexes: Synthesis of Highly Functionalised Seven-Membered

Formatting of funding sources

The fund provided by University of Mosul.

Acknowledgments

University of Mosul for funding

Benzocarbocycles, Chemistry–A European Journal 17(2) (2011) 564-571.

- [8] W. Oppolzer, V. Snieckus, Intramolecular ene reactions in organic synthesis, Angewandte Chemie International Edition in English 17(7) (1978) 476-486.
- [9] L.R. Domingo, M. Ríos-Gutiérrez, P. Pérez, Applications of the conceptual density functional theory indices to organic chemistry reactivity, Molecules 21(6) (2016) 748.
- [10] B. Gómez, P.K. Chattaraj, E. Chamorro, R. Contreras, P. Fuentealba, A density functional study of the Claisen rearrangement of allyl aryl ether, allyl arylamine, allyl aryl thio ether, and a series of meta-substituted molecules through reactivity and selectivity profiles, The Journal of Physical Chemistry A 106(46) (2002) 11227-11233.
- [11] E. Sicilia, N. Russo, T. Mineva, Correlation between energy, polarizability, and hardness profiles in the isomerization reaction of HNO and ClNO, The Journal of Physical Chemistry A 105(2) (2001) 442-450.
- [12] B. Wang, C. Rong, P.K. Chattaraj, S. Liu, A comparative study to predict regioselectivity, electrophilicity and nucleophilicity with Fukui function and Hirshfeld charge, Theoretical Chemistry Accounts 138(12) (2019) 1-9.
- [13] T. Chakraborty, R. Carbo-Dorca, Theoretical and Quantum Chemistry at the Dawn of the 21st Century, CRC Press2018.
- [14] F. Neese, Orca Manual Version 4. .